Arginase Inhibition Restores Peroxynitrite-Induced Endothelial Dysfunction via L-Arginine-Dependent Endothelial Nitric Oxide Synthase Phosphorylation
نویسندگان
چکیده
PURPOSE Peroxynitrite plays a critical role in vascular pathophysiology by increasing arginase activity and decreasing endothelial nitric oxide synthase (eNOS) activity. Therefore, the aims of this study were to investigate whether arginase inhibition and L-arginine supplement could restore peroxynitrite-induced endothelial dysfunction and determine the involved mechanism. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were treated with SIN-1, a peroxynitrite generator, and arginase activity, nitrite/nitrate production, and expression levels of proteins were measured. eNOS activation was evaluated via Western blot and dimer blot analysis. We also tested nitric oxide (NO) and reactive oxygen species (ROS) production and performed a vascular tension assay. RESULTS SIN-1 treatment increased arginase activity in a time- and dose-dependent manner and reciprocally decreased nitrite/nitrate production that was prevented by peroxynitrite scavenger in HUVECs. Furthermore, SIN-1 induced an increase in the expression level of arginase I and II, though not in eNOS protein. The decreased eNOS phosphorylation at Ser1177 and the increased at Thr495 by SIN-1 were restored with arginase inhibitor and L-arginine. The changed eNOS phosphorylation was consistent in the stability of eNOS dimers. SIN-1 decreased NO production and increased ROS generation in the aortic endothelium, all of which was reversed by arginase inhibitor or L-arginine. N(G)-Nitro-L-arginine methyl ester (L-NAME) prevented SIN-1-induced ROS generation. In the vascular tension assay, SIN-1 enhanced vasoconstrictor responses to U46619 and attenuated vasorelaxant responses to acetylcholine that were reversed by arginase inhibition. CONCLUSION These findings may explain the beneficial effect of arginase inhibition and L-arginine supplement on endothelial dysfunction under redox imbalance-dependent pathophysiological conditions.
منابع مشابه
Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats.
There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginas...
متن کاملTraumatic Brain Injury Causes Endothelial Dysfunction in the Systemic Microcirculation through Arginase-1-Dependent Uncoupling of Endothelial Nitric Oxide Synthase.
Endothelial dysfunction is a hallmark of many chronic diseases, including diabetes and long-term hypertension. We show that acute traumatic brain injury (TBI) leads to endothelial dysfunction in rat mesenteric arteries. Endothelial-dependent dilation was greatly diminished 24 h after TBI because of impaired nitric oxide (NO) production. The activity of arginase, which competes with endothelial ...
متن کاملArginase inhibition improves endothelial function in patients with coronary artery disease and type 2 diabetes mellitus.
BACKGROUND Endothelial dysfunction plays an important role in the early development of atherosclerosis and vascular complications in type 2 diabetes mellitus. Increased expression and activity of arginase, metabolizing the nitric oxide substrate l-arginine, may result in reduced production of nitric oxide and thereby endothelial dysfunction. We hypothesized that inhibition of arginase activity ...
متن کاملCoronary Heart Disease Arginase Inhibition Improves Endothelial Function in Patients With Coronary Artery Disease and Type 2 Diabetes Mellitus
Background—Endothelial dysfunction plays an important role in the early development of atherosclerosis and vascular complications in type 2 diabetes mellitus. Increased expression and activity of arginase, metabolizing the nitric oxide substrate L-arginine, may result in reduced production of nitric oxide and thereby endothelial dysfunction. We hypothesized that inhibition of arginase activity ...
متن کاملArginase contributes to endothelial cell oxidative stress in response to plasma from women with preeclampsia.
AIMS Preeclampsia is a hypertensive disorder characterized by vascular oxidative stress. Decreased availability of the vasodilator nitric oxide (NO) has been postulated to be involved in the pathophysiology of this disorder. Arginase, an enzyme that competes with nitric oxide synthase (NOS) for l-arginine, not only reduces NO formation but also increases superoxide production by NOS. In placent...
متن کامل